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Sources for Parameter Estimates 

• Surveillance data 

• Controlled trials 

• Outbreak data 

• Clinical reports data 

• Intervention  
outcomes studies 

• Calibration to historic 
data 

• Expert judgement 

• Systematic reviews 
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Introduction of Parameter Estimates 
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Preparation for Pooling 
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Example of Other Pooling 
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Pooled Results 
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Forest Plot 
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Forest Plot 2 
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Sensitivity Analyses 

• Same relative or absolute uncertainty in 
different parameters may have hugely 
different effect on outcomes or decisions 

• Help identify parameters that strongly affect 
– Key model results 

– Choice between policies 

• We place more emphasis in parameter 
estimation into parameters exhibiting high 
sensitivity 

 



Types of Sensitivity Analyses 

• Variables involved 
– One-way 

– Multi-way 

• Type of component 
being varied 
– Parameter sensitivity 

analysis: Parameter 
values 

– Structural sensitivity 
analysis: Examine effects 
of Model structure on 
results 

 

• Type of variation 
– Single alternative values 

– Monte Carlo analyses: 
Draws from probability 
distributions (many types of 
variations) 

• Frequency of variation 
– Static (parameter retains 

value all through simulation) 

– Ongoing change: Stochastic 
process 
• Accomplished via Monte-Carlo 

analyses 

 



Example Spider Diagram 
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• Each axis represents a % 
change in a particular 
parameter 
– This proportional change 

is identical for the 
different parameters 

• The distance assumed by 
the curve along that axis 
represents the 
magnitude of response 
to that change 
– Note that these 

sensitivities will depend 
on the state of system! 

http://www.niwotridge.com/images/BLOGImages/SpiderDiagram.jpg 



Systematic Examination of Policies 
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Sensitivity in Initial Value  

• Frequently we don’t know the exact state of 
the system at a certain point in time 

• A very useful type of sensitivity analysis is to 
vary the initial value of model stocks 

• In Vensim, this can be accomplished by  

– Indicating a parameter name within the “initial 
value” area for a stock 

– Varying the parameter value 

 



Imposing a Probability Distribution 
Monte Carlo Analysis 

• We feed in probability distributions to reflect our 
uncertainty about one or more parameters 

• The model is run many, many times (realizations) 

– For each realization, the model uses a different draw 
from those probability distribution 

• What emerges is resulting probability 
distribution for model outputs 

 



Example Resulting Distribution 

  

Empirical Fractiles 
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Multi-Way Sensitivity Analyses 

• When examining the results of changing 
multiple variables, need to consider how 
multiple variables vary together 

• If this covariation reflects dependence on 
some underlying factor, may be able to 
simulate uncertainty in underlying factor 

 



Performing Monte Carlo  
Sensitivity Analyses in Vensim 

• Need to specify three things 

– The parameters to vary 

– How to vary those parameters  

– Which model variables to save away 

 



How & What Parameters to Vary 

 



Model Values to Save Away 

 



Monte Carlo Analyses 

 



Sensitivity Results (Prevalence) 

 



Sensitivity Results  
(Fraction of Susceptibles) 

 



Stochastic Processes 
• Examples of things stochastically approximated 

– Stock market 

– Rainfall 

– Oil prices 

– Economic growth 

• What considered “stochastic” will depend on the 
scope of the model 

– Detailed model: Individual behaviour, transmission, etc. 

– A meteorological model may not consider rainfall 
stochastic 



Stochastic Processes 
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Dealing with Data Gradients 
• Often we don’t have reliable information on some 

parameters, but do have other data 
– Some parameters may not be observable, but some 

closely related observable data is available 

– Sometimes the data doesn’t have the detailed 
breakdown needed to specifically address one 
parameter 
• Available data could specify sum of a bunch of flows or stocks 

• Available data could specify some function of several 
quantities in the model (e.g. prevalence)  

• Some parameters may implicitly capture a large set 
of factors not explicitly represented in model 

• There are two big ways of dealing with this:  
manually “backing out”, and automated calibration 

 



“Backing Out” 

• Sometimes we can manually take several 
aggregate pieces of data, and use them to 
collectively figure out what more detailed data 
might be 

• Frequently this process involves imposing some 
(sometimes quite strong) assumptions 
– Combining data from different epidemiological 

contexts (national data used for provincial study) 

– Equilibrium assumptions (e.g. assumes stock is in 
equilibrium.  Cf deriving prevalence from incidence) 

– Independence of factors (e.g. two different risk 
factors convey independent risks) 

 



Example 

• Suppose we seek to find out the sex-specific prevalence 
of diabetes in some population 

• Suppose we know from published sources 
– The breakdown of the population by sex (cM, cF) 

– The population-wide prevalence of diabetes (pT) 

– The prevalence rate ratio of diabetes in women when 
compared to men (rrF) 

• We can “back out” the sex-specific prevalence from 
these aggregate data (pF, pM) 

• Here we can do this “backing out” without imposing 
assumptions 



Backing Out 

 # male diabetics + # female diabetics = # diabetics 

 (pM* cM)                  +        (pF* cF)            = pT*(cM+cF) 

• Further, we know that pF / pM =rrF=> pF = pM * rrF 

• Thus 

 (pM* cM)     +   ((pM * rrF)* cF)            = pT*(cM+cF) 

pM*(cM + rrF* cF) = pT*(cM+cF) 

• Thus 

– pM = pT*(cM+cF) / (cM + rrF* cF) 

– pF = pM * rrF = rrF * pT*(cM+cF) / (cM + rrF* cF) 



Disadvantages of “Backing Out” 

• Backing out often involves questionable 
assumptions (independence, equilibrium, etc.) 

• Sometimes a model is complex, with several 
related known pieces 

– Even thought we may know a lot of pieces of 
information, it would be extremely complex (or 
involve too many assumptions) to try to back out 
several pieces simultaneously 

 

 



Another Example: Joint & Marginal 
Prevalence 

Rural Urban 

Male pMR pMU pM 

Female pFR pMU pF 

pR pU 

Perhaps we know  
•The count of people in each { Sex, Geographic } category 
•The marginal prevalences (pR, pU , pM , pF) 

 
We need at least one more constraint  

•One possibility: assume pMR / pMU = pR/ pU 
We can then derive the prevalences in each { Sex, Geographic } category 
 
 
 



Example Tying Together Meta-analysis 
& Calibration 
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